retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 544


J. Am. Chem. Soc., 123 (27), 11908 -11916, 2001
DOI: 10.1021/ja0117985 S0002-7863(01)01798-X
 

 


Stabilities of Ion/Radical Adducts in the Liquid Phase as Derived from the Dependence of Electrochemical Cleavage Reactivities upon Solvent

Laurence Pause, Marc Robert, and Jean-Michel Savéant

Contribution from the Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591, Université de Paris 7 - Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France


The idea that significant ion/radical interactions should vary with solvent if they do exist in the liquid phase was pursued by an investigation of the dissociative electron-transfer reactivity of carbon tetrachloride and 4-cyanobenzyl chloride in four different solvents, 1,2-dichloroethane, N,N-dimethylformamide, ethanol, and formamide, by means of their cyclic voltammetric responses. Modification of the conventional dissociative electron transfer theory to take account of an interaction between fragments in the ion/radical pair resulting from the dissociative electron reaction allows a satisfactory fitting of the experimental data leading to the determination of the interaction energy. There is an approximate correlation between the interaction energies in the ion/radical pair and the solvation free energies of the leaving anion, Cl-. The interaction is maximal in 1,2-dichloroethane, which is both the least polar and the least able to solvate Cl-. The interaction is smaller in the polar solvents, albeit distinctly measurable. The two protic solvents, ethanol and formamide, which are the most able to solvate Cl-, give rise to similar interaction energies. The interaction is definitely stronger in N,N-dimethylformamide, which has a lesser ability to solvate Cl- than the two other polar solvents. The existence of significant ion/radical interactions in polar media is thus confirmed and a route to their determination opened.

 
   
 
© 2005 LEM CréditsContactVenir au LEM