retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 562


Anal. Chem.,74 (24), 6355 -6363, 2002
DOI: 10.1021/ac020385z S0003-2700(02)00385-2
 

 


Fabrication of Submicrometer-Sized Gold Electrodes of Controlled Geometry for Scanning Electrochemical-Atomic Force Microscopy

Jeremy Abbou, Christophe Demaile, Michel Druet and Jacques Moiroux

Contribution from the Laboratoire d'Electrochimie Moléculaire, Université de Paris 7 - Denis Diderot, Case Courrier 7107, 2 place Jussieu, 75251 Paris Cedex 05, France . E-mail: demaille@paris7.jussieu.fr


A method for fabricating submicrometer-sized gold electrodes of conical or spherical geometry is described. By generating an electric arc between an etched gold microwire and a tungsten counter electrode, the very end of the gold microwire can be melted and given an overall spherical or conical shape a few hundred nanometers in size. The whole wire is subsequently insulated via the cathodic deposition of electrophoretic paint. By applying a high-voltage pulse to the microwire, the film covering its very end can then be selectively removed, thus exposing a submicrometer-sized electrode surface of predefined geometry. The selective exposure of the preformed end of the microwire is demonstrated by cyclic voltammetry, scanning electron microscopy, and metal electrodeposition experiments. The electrophoretic paint coating provides a low-capacitance, robust insulating film allowing exploration of a very wide potential window in aqueous solution. The submicrometer-sized electrodes can easily be turned into probes suitable for combined scanning electrochemical-atomic force microscopy by bending and flattening the gold microwire so that the tip is borne by a flexible enough arm. The good agreement between theoretical and experimental scanning electrochemical microscopy approach curves thus obtained confirms that only the very end of the tip, of predefined geometry, is exposed to the solution.
 
 
   
 
© 2005 LEM CréditsContactVenir au LEM