retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 590

Langmuir 21 (8), 3362 -3375, 2005
DOI: 10.1021/la047139y S0743-7463(04)07139-2
 
 

Dense Monolayers of Metal-Chelating Ligands Covalently Attached to Carbon Electrodes Electrochemically and Their Useful Application in Affinity Binding of Histidine-Tagged Proteins

   
Ronald Blankespoor, Benoît Limoges, Bernd Schöllhorn, Jean-Laurent Syssa-Magalé, and Dounia Yazidi

Department of Chemistry, Calvin College, 3201 Burton SE, Grand Rapids, Michigan 49546, Laboratoire d'Electrochimie Moléculaire de l'Université Denis Diderot (Paris 7), UMR CNRS 7591, 2 place Jussieu, 75251 Paris Cedex 05, France, and Département de Chimie, Ecole Normale Supérieure, UMR CNRS 8640 - PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France

 


In this work, monolayers of metal complexes were covalently attached to the surface of carbon electrodes with the goal of binding monolayers of histidine-tagged proteins with a controlled molecular orientation and a maintained biological activity. In this novel method, which is simple, versatile, and efficient, the covalent attachment was accomplished in a single step by the electrochemical reduction of aryl diazonium ions that were substituted with a nitrilotriacetic (NTA) or an imminodiacetic (IDA) ligand at the para position. The transient aryl radicals that were generated in the reduction were grafted to the surfaces of glassy carbon, highly oriented pyrolitic graphite, and graphite-based screen-printed electrodes, producing dense monolayers of the ligands. The NTA- and IDA-modified electrodes were shown to efficiently chelate Cu(II) and Ni(II) ions. The presence of the metal was established using X-ray photoelectron spectroscopy and electrochemistry. Surface coverages of the ligands were indirectly determined from the electroactivity of the copper(II) complex formed on the electrode surface. Studies on the effect of electrodeposition time and potential showed that, at sufficiently negative potentials, the surface coverage reached a saturating value in less than 2 min of electrodeposition time, which corresponds to the formation of a close-packed monolayer of ligand on the electrode surface. Once loaded with a metal ion, the modified electrode was able to bind specifically to histidine-tagged proteins such as the horseradish peroxidase (His-HRP) or to an enhanced, recombinant green-fluorescent protein via its N-terminal hexahistidine tail. In the case of His-HRP, the amount of active enzyme specifically immobilized by metal-chelating binding was determined from the analysis of electrocatalytic currents using cyclic voltammetry. The electrochemical grafting makes it possible to accurately controlled and electronically address the amount of deposited ligand on the conductive surfaces of carbon electrodes with any size and shape.

 
   
 
© 2005 LEM CréditsContactVenir au LEM