retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 599

J. Am. Chem. Soc., ,128, 4552 -4553, 2006 .
DOI: 10.1021/ja060527x
 
 

Electrochemical and Homogeneous Proton-Coupled Electron Transfers: Concerted Pathways in the One-Electron Oxidation of a Phenol Coupled with an Intramolecular Amine-Driven Proton Transfer

Cyrille Costentin, Marc Robert, and Jean-Michel Savéant*

Contribution from the Laboratoire d'Electrochimie Moléculaire, Université de Paris 7-Denis Diderot, 2 place Jussieu,75251 Paris Cedex 05, France

 


Proton-coupled electron transfers currently attract considerable attention in view of their likely involvement in many natural processes. Electrochemistry, through techniques such as cyclic voltammetry, is an efficient way of investigating the reaction mechanism of these reactions, and deciding whether proton and electron transfers are concerted or occur in a stepwise manner. The oxidation of an ortho-substituted 4,6-di (tert-butyl)-phenol in which the phenolic hydrogen atom is transferred during the reaction to the nitrogen atom of a nearby amine is taken as illustrative example. A careful analysis of the cyclic voltammetric responses obtained with this compound and its OD derivative allows, after estimation of the various thermodynamic parameters, ruling out the occurrence of the square scheme mechanism involving the proton-electron and electron-proton sequences. Simulation and comparison of the rate constant and H/D kinetic isotope effect with theoretical predictions show that the experimental value of the preexponential factor is ca. 1 order of magnitude larger than the theoretical value. Detailed calculations suggest that an electric field effect is responsible for this discrepancy.
 
   
 
© 2005 LEM CréditsContactVenir au LEM