retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 615

J. Am. Chem. Soc. , 129, 5870 - 5879 , 2007.
DOI: 10.1021/ja067950q
 

Concerted Proton-Electron Transfer Reactions in Water. Are the Driving Force and Rate Constant Depending on pH When Water Acts as Proton Donor or Acceptor?

Cyrille Costentin, Marc Robert, and Jean-Michel Savéant

Contribution from the Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université, CNRS No 7591, Université de Paris 7-Denis Diderot, 2 place Jussieu, 75251 Paris Cedex 05, France

 


The competition between stepwise and concerted (CPET) pathways in proton-coupled electron-transfer reactions in water is discussed on thermodynamic and kinetic bases. In the case where water is the proton acceptor, the CPET pathway may compete favorably with the stepwise pathway. The main parameter of the competition is pK of the oxidized form of the substrate being smaller or larger than 0. The driving force of the forward reaction is however independent of pH, despite the equilibrium redox potential of the proton-electron system being a function of pH. At high pH values, CPET reactions involving OH- as proton acceptor may likewise compete favorably with stepwise pathways. The overall reaction rate constant is an increasing function of pH, not because the driving force depends on pH but because OH- is a reactant. In buffered media, association of the substrate with the basic components of the buffer offers an alternative CPET route; the driving force comes closer to that offered by the pH-dependent equilibrium redox potential.
 
   
 
© 2005 LEM CréditsContactVenir au LEM