retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 642

Analyst 134, 349-353, 2009.
DOI: 110.1039/b816220d
 

Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays.

Murielle Rochelet-Déquaire, Naïma Djellouli, Benoît Limoges, and Pierre Brossier

Laboratoire Interactions Muqueuses Agents Transmissibles, EA-562 Facultés de Médecine et Pharmacie, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France, and Laboratoire d‘Electrochimie Moléculaire, UMR CNRS 7591 Université Paris Diderot, 2 place Jussieu 75251 Paris Cedex 05 ,France

 


The use of the alkaline phosphatase (AP) as an enzyme label and the amplification of its analytical response with a diaphorase (DI) secondary enzyme were investigated in an electrochemical hybridization assay involving arrays of carbon screen-printed DNA biosensors for the sensitive quantification of an amplified 406-base pair human cytomegalovirus DNA sequence (HCMV DNA). For this purpose, PCR-amplified biotinylated HCMV DNA targets were simultaneously bound to a monolayer of neutravidin irreversibly adsorbed on the surface of the electrodes and hybridized to complementary digoxigenin-labeled detection probes. The amount of hybrids immobilized on the electrode surface was labeled with an anti-digoxigenin AP conjugate and quantified electrochemically by measuring the activity of the AP label through the hydrolysis of the electroinactive p-aminophenylphosphate (PAPP) substrate into the p-aminophenol (PAP) product. The intensity of the cyclic voltammetric anodic peak current resulting from the oxidation of PAP into p-quinoneimine (PQI) was related to the number of viral amplified DNA targets present in the sample, and a detection limit of 10 pM was thus achieved. The electrochemical response of the AP label product was further enhanced by adding the diaphorase enzymatic amplifier in the solution. In the presence of the auxiliary enzyme DI, the PQI was reduced back to PAP and the resulting oxidized form of DI was finally regenerated in its reduced native state by its natural substrate, NADH. Such a bienzymatic amplification scheme enabled a 100-fold lowering of the HCMV DNA detection limit obtained with the monoenzymatic system.

 
   
 
© 2005 LEM CréditsContactVenir au LEM