retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 657

PNAS 107, 3367–3372, 2010.
DOI: 10.1073/pnas.0914693107
 

Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation

Julien Bonin, Cyrille Costentin, Cyril Louault, Marc Robert, Mathilde Routier, and Jean-Michel Savéant

Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, UMR CNRS 7591, 15, rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France

 


Three experimental techniques, laser flash photolysis, redox catalysis, and stopped-flow, were used to investigate the variation of the oxidation rate constant of phenol in neat water with the driving force offered by a series of electron acceptors. Taking into account a result previously obtained with a low–driving force electron acceptor thus allowed scanning more than half an electron-volt driving force range. Variation of the rate constant with pH showed the transition between a direct phenol oxidation reaction at low pH, where the rate constant does not vary with pH, and a stepwise reaction involving the prior deprotonation of phenol by OH-, characterized by a unity-slope variation. Analyses of the direct oxidation kinetics, based on its variation with the driving force and on the determination of H/D isotope effects, ruled out a stepwise mechanism in which electron transfer is followed by the deprotonation of the initial cation radical at the benefit of a pathway in which proton and electron are transferred concertedly. Derivation of the characteristics of counterdiffusion in termolecular reactions allowed showing that the concerted process is under activation control. It is characterized by a remarkably small reorganization energy, in line with the electrochemical counterpart of the reaction, underpinning the very peculiar behavior of water as proton acceptor when it is used as the solvent.

 
   
 
© 2005 LEM CréditsContactVenir au LEM