retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 666

Anal. Chem., 82 (15), 6353–6362, 2010. (Accelerated Article)
DOI: 10.1021/ac1012464
 

doi

Touching Surface-Attached Molecules with a Microelectrode: Mapping the Distribution of Redox-Labeled Macromolecules by Electrochemical-Atomic Force Microscopy

Agnès Anne, Edmond Cambril, Arnaud Chovin and Christophe Demaille

Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université CNRS No. 7591, Université Paris Diderot-Paris 7, 15 Rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France, and Laboratoire de Photonique et de Nanostructures (LPN/CNRS), Route de Nozay, 91460 Marcoussis, France


We report on the development of a mediator-free electrochemical-atomic force microscopy (AFM-SECM) technique designed for high-resolution imaging of molecular layers of nanometer-sized redox-labeled (macro)molecules immobilized onto electrode surfaces. This new AFM-SECM imaging technique, we call molecule touching atomic force electrochemical microscopy (Mt/AFM-SECM), is based on the direct contact between surface-anchored molecules and an incoming microelectrode (tip). To validate the working-principle of this microscopy, we consider a model system consisting of a monolayer of nanometer long, flexible, polyethylene glycol (PEG) chains covalently attached by one extremity to a gold surface and bearing at their free end a ferrocene (Fc) redox tag. Using Mt/AFM-SECM in tapping mode, i.e., by oscillating the tip so that it comes in intermittent contact with the grafted chains, we show that the substrate topography and the distribution of the redox-tagged PEG chains immobilized on the gold surface can be simultaneously and independently imaged at the sub-100 nm scale. This novel type of SECM imaging may be found useful for characterizing the surface of advanced biosensors which use electrode-grafted, redox-tagged, linear biochains, such as peptides or DNA chains, as sensing elements. In principle, Mt/AFM-SECM should also permit in situ imaging of the distribution of any kind of macromolecules immobilized on electrode surfaces or simply conducting surfaces, provided they are labeled by a suitable redox tag.

 
   
 
© 2005 LEM CréditsContactVenir au LEM