retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 674

Anal. Chem. 82 (21), 8766– 8774, 2010.
DOI: 10.1021/ac101262v
 
doi

Bipolar Electrodes: A Useful Tool for Concentration, Separation, and Detection of Analytes in Microelectrochemical Systems

François Mavré, Robbyn K. Anand, Derek R. Laws, Kwok-Fan Chow, Byoung-Yong Chang, John A. Crooks, and Richard M. Crooks

Université Paris Diderot (France), The University of Texas at Austin


A bipolar electrode (BPE) is an electronic conductor in contact with an ionically conductive phase. When a sufficiently high electric field is applied across the ionic phase, faradaic reactions occur at the ends of the BPE even though there is no direct electrical connection between it and an external power supply. In this article, we describe the fundamental principles and some electroanalytical applications of BPEs for array-based sensing, separations, and concentration enrichment in microelectrochemical systems. Specifically, we show how the latter three operations, which are normally thought of as arising from different phenomena, are linked by processes occurring on and near BPEs confined within a convenient, miniaturized microfluidic format. The results presented here demonstrate that under a particular set of conditions, up to 1000 well-defined BPEs can be simultaneously activated and interrogated using just a single pair of driving electrodes. Furthermore, a slight change to the resistance of the buffer solution within the microfluidic channel leads to the separation and concentration enrichment of charged analytes.

 
   
 
© 2005 LEM CréditsContactVenir au LEM