retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 696

J. Am. Chem. Soc. 133 (47), 19160-19167, 2011
DOI:10.1021/ja206561n
 

doi

Concerted Proton–Electron Transfers. Consistency between Electrochemical Kinetics and their Homogeneous Counterparts

Cyrille Costentin, Viviane Hajj, Cyril Louault, Marc Robert, and Jean-Michel Savéant

Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Univ - CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France

The concerted proton–electron transfer (CPET) oxidation of phenol with water (in water) and hydrogen phosphate as proton acceptors provides a good example for testing the consistency of the electrochemical and homogeneous approaches to a reaction, the comprehension of which raises more mechanistic and kinetic challenges than that of a simple outer-sphere electron transfer. Comparison of the intrinsic kinetic characteristics (obtained at zero driving force of the CPET reaction) shows that consistency is indeed observed after a careful identification and quantitation of side factors (electrical work terms, image force effects). Water (in water) appears as a better intrinsic proton acceptor than hydrogen phosphate in both cases in terms of reorganization energy and pre-exponential factor, corroborating the mechanism by which electron transfer is concerted with Grotthus-type proton translocation in water. Detailed compared analysis of the approaches also revealed that modest but significant electric field effects may be at work in the electrochemical case. Comparison with phenoxide ion oxidation, taken as a reference outer-sphere electron transfer, points to a CPET precursor complex that possesses a precise spatial structure allowing the formation of one or several H-bonds as required by the occurrence of the CPET reaction, thus decreasing considerably the number of efficient collisions compared with those undergone by structureless spherical reactants.

 
   
 
© 2005 LEM CréditsContactVenir au LEM