retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 766

Langmuir, 31 (6), 1931-1940, 2015
DOI:10.1021/la503760x
   
doi

Efficient chemisorption of organophosphorous redox probes on indium tin oxide surfaces under mild conditions

Amélie Forget, Benoît Limoges, and Véronique Balland

Laboratoire d’Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris, Cedex 13, France

We report a mild and straightforward one-step chemical surface functionalization of indium tin oxide (ITO) electrodes by redox-active molecules bearing an organophosphoryl anchoring group (i.e., alkyl phosphate or alkyl phosphonate group). The method takes advantage of simple passive adsorption in an aqueous solution at room temperature. We show that organophosphorus compounds can adsorb much more strongly and stably on an ITO surface than analogous redox-active molecules bearing a carboxylate or a boronate moiety. We provide evidence, through quantitative electrochemical characterization (i.e., by cyclic voltammetry) of the adsorbed organophosphoryl redox-active molecules, of the occurrence of three different adsorbate fractions on ITO, exhibiting different stabilities on the surface. Among these three fractions, one is observed to be strongly chemisorbed, exhibiting high stability and resistance to desorption/hydrolysis in a free-redox probe aqueous buffer. We attribute this remarkable stability to the formation of chemical bonds between the organophosphorus anchoring group and the metal oxide surface, likely occurring through a heterocondensation reaction in water. From XPS analysis, we also demonstrate that the surface coverage of the chemisorbed molecules is highly affected by the degree of surface hydroxylation, a parameter that can be tuned by simply preconditioning the freshly cleaned ITO surfaces in water. The lower the relative surface hydroxide density on ITO, the higher was the surface coverage of the chemisorbed species. This behavior is in line with a chemisorption mechanism involving coordination of a deprotonated phosphoryl oxygen atom to the non-hydroxylated acidic metal sites of ITO.

 
   
 
© 2005 LEM CréditsContactVenir au LEM