retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 833

Analyst, 142 (18), 3432-3440, 2017
DOI:10.1039/C7AN00978J
   

 

doi


Detection of a few DNA copies by real-time electrochemical polymerase chain reaction

 

Mélanie Moreau, Sébastien Delile, Ashwani Sharma, Claire Fave, Aurélie Perrier, Benoît Limoges, and Damien Marchal

Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
Equipe de Chimie Théorique et Modélisation (CTM), Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France
Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas Mann, F-75205 Paris Cedex 13, France

In the current work, accurate quantification over 10 to 108 DNA copies has been successfully achieved for the first time by real-time electrochemical PCR. This has been made possible thanks to the combined use of a fully automated house-built electrochemical qPCR device, optimized for parallel heating and electrochemical monitoring of up to 48 PCR solutions, and the appropriate selection of a DNA intercalating redox probe retaining a strong affinity binding to ds-DNA at the PCR measurement temperature of 72 C (corresponding to the PCR elongation step). This has also been achieved through the identification of the key parameters governing the onset electrochemical signal decrease and amplitude signal decrease as a function of the PCR cycle for a given DNA intercalating redox probe, thus allowing us to predict the electrochemical PCR kinetic plots from the values of the DNA affinity binding constant determined as a function of temperature. To the best of our knowledge, the analytical performances of the current electrochemical qPCR outperform all of those previously published, in terms of detection limit, dynamic range, reproducibility and melting curve analysis compared to that achieved on a commercialized bench-top fluorescence-based qPCR instrument.

 
   
 
© 2005 LEM CréditsContactVenir au LEM