retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 892

ACS Appl. Energy Mater., 2 (7), 4981-4986, 2019
DOI:10.1021/acsami.9b05240
   
doi

 



Electrochemical Capacitive Charging in Porous Materials. Discriminating between Ohmic Potential Drop and Counterion Diffusion

Cyrille Costentin, and Jean-Michel Savéant

Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université – CNRS N° 7591, Bâtiment Lavoisier, 15 Rue Jean de Baïf, 75205, Paris Cedex 13, France

Capacitors and batteries are the two main electrochemical means to store electrical energy. In the first case, good performances in terms of capacitance are closely related to the porous structure of the electrode coating material. Remarkable performances in terms of capacitance are indeed achieved by the increase of the area of the interface between the electronic conducting material of the film and the ionic solution in the pores. With respect to the dynamics of charge storage, we show that it is not governed by counterion diffusion as often asserted. It is rather related to ohmic potential drop in the pores. This is demonstrated first in the case of a simple planar electrode and then generalized to the case of porous films. A quantitative treatment is further described based on a transmission-line approach of the problem, after careful distinction between nanopores (of the size of compact double layers) and mesopores. Application to available experiments show remarkable agreement between theoretical predictions and experimental data. It is finally emphasized that the distinction between nanopores and mesopores entails two different metrics as far as energy storage and power are concerned.

 
   
 
© 2005 LEM CréditsContactVenir au LEM