retour à l'accueil

Laboratoire d'Electrochimie Moleculaire, LEM, Paris

UMR CNRS - Université Paris Diderot - Paris France

   
 
Master Frontiers in Chemistry | UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie Université de Paris Master Chimie Sorbonne Paris Cité UFR de Chimie - Université Paris Diderot - Paris 7 CNRS - Institut de chimie
 |   Ecole Doctorale 388  |    Master Frontiers in Chemistry   |   C'Nano IdF   |   Respore  |
Université Paris Diderot
Université de Paris CNRS, Centre National de la Recherche Scientifique
 
 


Le LEM - Publications: Abstracts

Publication 896

Angew. Chem. Int. Ed., 58 (45), 16172-16176, 2019
DOI:10.1002/anie.201909257
   
doi

Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine

 

Etienne Boutin, Min Wang, John C. Lin, Matthieu Mesnage, Daniela Mendoza, Benedikt Lassalle-Kaiser, Christopher Hahn, Thomas F. Jaramillo, and Marc Robert

Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS 75013 Paris (France)
SUNCAT Center for Interface Science and Catalysis, Dept of Chemical Engineering, Stanford University Stanford, CA 94305 (USA)
Synchrotron SOLEIL L’Orme des Merisiers, Saint-Aubin, 91192, Gif-sur-Yvette (France)
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park, CA 94025 (USA)

Abstract
Conversion of CO2 into valuable molecules is a field of intensive investigation with the aim of developing scalable technologies for making fuels using renewable energy sources. While electrochemical reduction into CO and formate are approaching industrial maturity, a current challenge is obtaining more reduced products like methanol. However, literature on the matter is scarce, and even more for the use of molecular catalysts. Here, we demonstrate that cobalt phthalocyanine, a well-known catalyst for the electrochemical conversion of CO2 to CO, can also catalyze the reaction from CO2 or CO to methanol in aqueous electrolytes at ambient conditions of temperature and pressure. The studies identify formaldehyde as a key intermediate and an unexpected pH effect on selectivity. This paves the way for establishing a sequential process where CO2 is first converted to CO which is subsequently used as a reactant to produce methanol. Under ideal conditions, the reaction shows a global Faradaic efficiency of 19.5 % and chemical selectivity of 7.5 %.

 
   
 
© 2005 LEM CréditsContactVenir au LEM