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Reorganization energy and pre-exponential factor from

temperature-dependent experiments in electron transfer reactions.

A typical example: the reduction of tert-nitrobutane
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The electrochemical one-electron reduction of tert-nitrobutane

in N,N0-dimethylformamide is a typical reaction, which has been

shown to follow the quadratic model of outersphere electron

transfer. The variation of the standard rate constant with temperature

allows a separate determination of the reorganization energy

and of the pre-exponential factor. The value found for the former

is in agreement with independent estimates of the solvent and

intramolecular reorganization energies. The value of the latter,

significantly larger than the collision frequency, implies that the

reaction starts to take place before close contact with the

electrode surface.

Considerable attention is currently devoted to proton-coupled

electron transfers in view of their ubiquity in natural systems

on the one hand and in activation of small molecules involved

in the resolution of modern energy challenges on the other.1

Particular emphasis has been put in this area on concerted

processes (CPET: concerted proton–electron transfer). In the

various attempts to develop and test a theoretical model of the

electrochemical CPET reactions, attention has been called to

the usefulness of a full analysis of the kinetics of simple

outersphere electron transfer reactions, which may serve

further on as references for the more complicated cases of

CPET reactions (see for example ref. 2). As detailed below the

reduction of tert-nitrobutane in N,N0-dimethylformamide at a

mercury electrode appears as such a system, the kinetic

analysis of which is worth completing adding new experiments

and treatments to the already available data. In this respect,

determination of both reorganization energy and pre-exponential

factor is crucial in order to have benchmarks to compare simple

outersphere electron transfer and CPET processes.

Kinetic models of outersphere3 electron transfer, based on a

quadratic dependence of the activation free energy DGa
f , from

the driving force, �DG0 (eqn (1)), are available since a long

time.4,5

DGa
f ¼

l
4

1þ DG0

l

� �2

ð1Þ

where l is the reorganization energy. The forward electron

transfer rate constant, kf, is then given by:

kf ¼ Z exp �DGa
f

RT

� �
ð2Þ

where Z, the pre-exponential factor, is a measure of the

approach between the reactants and the adiabaticity of the

electron transfer.

In the electrochemical case,

DG0 = F(E � E0)

for reduction and the applicability of eqn (1) and (2) requires the

approximation that electron electronic states in the electrode

involved in the reaction are those belonging to the Fermi level.

In spite of the longstanding availability of the Marcus–Hush

model, detailed experimental testing of the quadraticity of the

activation–driving force relationship and determination of the

kinetic-governing parameters are scarce. Assuming a priori

the validity of theMarcus–Hushmodel, the reorganization energy,

considered to arise essentially from solvent reorganization, was

determined in a large series of aromatic molecules, based on the

assumption that the pre-exponential factor is equal to the

collision frequency.6 The quadratic character of the activation–

driving force law (eqn (1)) resulting in a linear variation of

the transfer coefficient, a (eqn (3)), has then been shown to

be valid for the one-electron reduction of tert-nitrobutane in

N,N0-dimethylformamide (DMF) and acetonitrile (ACN) on

mercury7 and platinum electrodes.8

a ¼ @DG
a
f

@DG0
¼ @DG

a
f

@E
¼ 1

2
1þ DG0

l

� �
¼ 1

2
1þ FðE � E0Þ

l

� �

ð3Þ

Similar conclusions were drawn for the reduction of other organic

molecules (nitromesitylene, nitrodurene, terephthalonitrile,

phthalonitrile, diacetyl benzene) in ACN, although the variation

of the transfer coefficient with driving force could be observed on

a narrower range of electrode potential.9 The same demonstration

has also been made for the reduction of benzaldehyde in

ethanol.10 It was emphasized that the choice of uncharged

molecules to investigate the variation of a with potential

minimized the double layer effects as compared to attempts

Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie
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using charge metal complexes, with which a variations may be

blurred by the potential dependence of double layer effects. In

all these cases, the reorganization energy was derived from the

experimental data by means of eqn (1) and (2), taking for the

pre-exponential factor, Z, the frequency for the collision of

the reactant with the electrode surface.11 Recent theoretical

developments have drawn attention on the possibility that the

reactant may react at larger distances than close contact,

which results in a larger value of the pre-exponential factor.2,12

One way for determining the pre-exponential factor and the

reorganization energy separately is to observe the variation of the

electrochemical kinetics with temperature. The electrochemical

reduction of tert-nitrobutane on a mercury electrode in N,N0-

dimethylformamide was selected as an example since the quadratic

character of the rate law was thoroughly ascertained in this case.

The values of both the reorganization energy and pre-exponential

factor will be compared to theoretical estimations.13

Typical cyclic voltammetric responses obtained as a function

of temperature are shown in Fig. 1. They can be simulated by

linearizing the current–potential relationship at the electrode

surface so as to treat the data by a Butler–Volmer law with a

transfer coefficient equal to 0.5, as justified by the rather limited

extent of the potential excursion and by the thickness (difference

between the half peak and the peak potentials) of the voltam-

metric waves. The experimental curve could thus be simulated14

satisfactorily leading to the standard rate constants, kS, displayed

in Fig. 2.

The Arrhenius plot in Fig. 2 may be expressed as:14e

ln kS ¼ lnZ � l
4
þ F

2
fS

� �
1

RT

where fS is the potential at the reaction site. From the linear fit in

Fig. 2, it follows that l+ 2FfS = 1.5 eV and Z= 8350 cm s�1.

fS may be approximated by the potential in the outer Helmholtz

plane, i.e. fS = �0.12 V.6,9 It follows that l = 1.74 eV.

Although this is not central to the purpose of establishing

the kinetic parameters of our reference system, l may be

dissected into solvent reorganization energy, l0, and intra-

molecular reorganization energy li. As discussed earlier, the

solvent reorganization energy may approximately be estimated

by the following relationship:14e

l0ðeVÞ ffi
3

aðÅÞ
¼ 1

where a is the radius of the reactant equivalent sphere, taking

a = 3 Å, as estimated for the solvation radius of the nitro-

portion of tert-nitrobutane where charge is located. Although

more rigorous treatments have been developed,18 a simple

approximate quantum mechanical calculation (B3LYP/

6-31+G*19) allowed an estimation of li according to the

method depicted in Fig. 3, with:20

li ¼
½ERð1Þ � ERð0Þ� þ ½EPð0Þ � E

P
ð1Þ�

2

As to the pre-exponential factor, Z = 8350 cm s�1, it

is significantly larger than the collision frequency,

Fig. 1 Cyclic voltammetry of tert-nitrobutane (1 mM) in DMF +

0.1 M n-NBu4BF4 on a mercury drop electrode (the size of the drop

is not the same in all experiments) as a function of temperature

(as indicated in each diagram). Scan rate: 10 V s�1.15–17 Blue:

experimental curves. Green: simulated curves.

Fig. 2 Variation with temperature (K) of the standard rate constant

derived from the simulations in Fig. 1, leading to the Arrhenius plot

represented by the blue straight line.

Fig. 3 Determination of li. Potential energy as a function of a reaction

coordinateX for tert-nitrobutane (blue), noted ER(X), and tert-nitrobutane

anion radical (green), noted EP(X), in gas phase21 leading to an average

value of 0.73 eV. Adding the value of li, thus found, to the preceding value

estimated for l0 results in a value of l equal to 1.73 eV, which compares

very favorably with the experimental value, 1.74 eV. This excellent agree-

ment is however partly fortuitous in view of the uncertainty embodied in

the quantum chemical calculations. The important point is that the orders

of magnitude are the same.
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Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT=2pM

p
¼ 6000 cm s�1 (M: molar mass). The fact

that the pre-exponential factor is larger than the collision

frequency indicates that the reaction starts before close contact

with the electrode surface, even though its probability is a

decreasing function of the distance to the electrode surface.2,12

The difference between the two values is however modest, owing

to the large size of the n-NBu4
+ cation of the supporting

electrolyte, which renders the coupling between the reactant

and the electrode inefficient for distances larger than the

n-NBu4
+ radius. This falls in line with a previously established

correlation between the pre-exponential factor and radius of the

supporting electrolyte cation, observed with the reduction of

nitromesitylene in DMF.13b The electron transfer is thus in

the non-adiabatic regime with an intrinsic coupling constant

(electronic coupling constant between the electrode and the

substrate at a nil approach distance) of ca. 0.12 eV.22

In summary, taking as an example the electrochemical

one-electron reduction of tert-nitrobutane in DMF, a reaction

which has been previously shown to obey the quadratic laws of

outersphere electron transfer, the systematic investigation of

the temperature dependence of the standard rate constant

allows the separate determination of the reorganization energy

and of the pre-exponential factor. Independent estimate of the

reorganization energy from its outer and inner components

is in good agreement with the experimental value. The pre-

exponential factor is larger than the collision frequency,

pointing to the fact that the reaction starts before close contact

with the electrode surface. The large size of the supporting

electrolyte cation, n-NBu4
+, renders however this effect rather

modest.
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